Assignment 2

Due: October 13th

Problem 1 Give state diagrams of DFAs recognizing the following languages.
a) $\{w \mid w$ contains the substrings $a b$ and $b a\}, \Sigma=\{a, b\}$
b) $\{w \mid w$ contains an even number of 0 s or exactly three 1 s $\}, \Sigma=\{0,1\}$
c) $\left\{w \mid w=a^{n} b^{n}, 0 \leq n \leq 3\right\}, \Sigma=\{a, b, c\}$

Problem 2 (Sipser 1.16 b) NFA to DFA construction

See book for details

Problem 3 (Sipser 1.28 b) Convert the following regular expression to an NFA using the procedure from Theorem 1.54. $\Sigma=\{a, b\}$.

$$
a^{+} \cup(a b)^{+}
$$

Problem 4 Prove that the language:

$$
\{w \mid w \text { is a multiple of } k \text { represented in binary }\}
$$

is regular for all finite values of k. (Note: You need to describe a general construction for all possible k)

